If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+17x+61=0
a = 1; b = 17; c = +61;
Δ = b2-4ac
Δ = 172-4·1·61
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-3\sqrt{5}}{2*1}=\frac{-17-3\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+3\sqrt{5}}{2*1}=\frac{-17+3\sqrt{5}}{2} $
| 2=x-5/3 | | -8u+6(u-3)=-26 | | 3/4x-13=90 | | 7-(2x+2)=-3x+4 | | 3x-31=2(x+6) | | 10+5x-3x-10=0 | | 3x=-21/2 | | 16+x-4=-3 | | 8+2×n=12 | | 8(v-6)=-88 | | 40+100m=42+100m | | -6+x/3=0 | | 3(3m+5)=78 | | 2x-4x=6-(x-2) | | 3/5x+7=2/5x-2 | | 5(2x-3)-(x-9)=21 | | 11.2+3y=9 | | 3m+8(2m-6m)=2+14m | | 2/6=-1x | | Y=-5.8-3ªx | | 0.766/1=x/20 | | d=148/2+26 | | 9x-10=9x+10 | | 16=-8p | | -5(2x+6)+9=-32 | | d=100/2+26 | | 1.5x+15=29.50 | | 7m-4-9m-36=O | | 15x+1.5=29.5 | | -33=7(1-7n)-5(8+7n) | | 1.5x(15)=29.50 | | 13×0×p=0 |